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0 p t i mizat i o n Tech niq ues A p p I ied to 
Design Problems 

- 

Pose as an 

Problem 
Problem Design Optimization 

The nonlinear mathematical programming method (forma! optimization) has had 
many applications in engineering design (refs. 1 and 2). This figure illustrates the use of 
optimization techniques in the design process. The design process begins with the 
design problem, such as the classic example of the two-bar truss designed for minimum 
weight as seen in the leftmost part of the fi ure. 

of an optimization problem consisting of an objective function, design variables, and 
constraint function relations. The middle part of the figure shows the two-bar truss design 

L b e  diameter and truss height are design variables, with stress and Euler buckling 
considered as constraint function relations. 

optimization software such as CONMIN, ADS, or NPSOL (refs. 3,4, and 5). This final 
stage of software development can be both tedious and error-prone. 

design easier and less error-prone. 

If formal optimization is to be applied, ill e design problem must be recast in the form 

osed as an optimization problem. The total truss weight is the objective function, the 

Last1 , the desi ner develops or obtaifis analysis software confaining a mathematical 
model of Yhe object ?I eing optimized, and then interfaces the analysis routine with existing 

computer language whose goal IS to make the software implementation p ?l ase of optimum 
This paper presents the Sizing and Optimization Language (SOL), special-purpose 

Im lement with Com uter 
8ode and Optimizarion 

Routine 

E. G. Two-bar Truss 

Minimize Truss Weight 

Objective: Difficulties: Minimum Weight 

Design Variables: 
Tube Diameter 
Truss Height 

Stress Re uirements 
Constraints: 

Euler Buck 1 ing 

0 Tedious 

0 Error-Prone 



SOL: A High-Level Computer Language 

The use of a high-level computer language, as exemplified by SOL, meets the goals of 
making the optimum-design process easier and less error-prone, as seen in the figure 
below. 

In terms of analysis, SOL provides statements which can either model a design 
mathematically or can model a design with subroutines and other code. In addition, a 
FORTRAN block feature permits the user to incorporate existing FORTRAN routines via 
subroutine calls and parameter-passing. 

In terms of optimization, SOL provides an OPTIMIZE statement for describing an 
optimization problem. The OPTIMIZE description is concise and parallels the 
mathematical description of an optimization roblem. Because the OPTIMIZE statement is 

interface between optimization and analysis. 
In terms of flexibility, SOL is quite general and can be used to code a variety of design 

problems. 
In terms of error-checking, the SOL compiler provides a vehicle for error-checking 

specific to optimization problems. As the syntax of SOL statements is checked, semantic 
checks on the use of the statements can also be performed. Additionally, the compiler 
offers a listing which includes the SOLpro ram indexed by line number; an optimization 

and a cross-reference giving each variable and the lines on which the variable was used. 

a built-in language feature, like a DO or I F F  R EN/ELSE statement, the language is the 

summary for each optimization which lists 9 he objective, design variables, and constraints; 

GOAL: Make ODtimization Use EASIER and LESS ERROR-PRONE 

Create or Incorporate 
Analysis Software 

Interface Anal sis and 
Optimization Zoftware 

Method for a Variety 
of Design Problems 

Error-Checking: Saves 
Time and Face 

0 Create Analysis in SOL 

0 Language is Flexible I 

Source Listing, Variable Cross 
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SOL Statements 

SOL is a simple but powerful language. A brief overview of the language elements of 
SOL is offered here givin a re resentative list of available SOL statements. Further 

SOL offers many traditional language features found in "conventional languages," 
e.g. FORTRAN or Pascal. SOL provides declaration statements such as variable and 
subroutine declaration; control statements such as DO loops, IF/THEN/ELSE statements, 
and subroutine calls; calculation statements (Le. assignments, math operators and 
built-in math functions); and output statements such as PRINT. 

SOL has unique language features as well, such as an OPTIMIZE statement for 
describing an optimization problem and an ASSEMBLAGE statement (beyond the scope 
of this a er to facilitate the hierarchical modelin of s stems. As mentioned earlier, 
SOL's !&R$RAN block allows existing FORTRAi cod to appear within a SOL program. 
To make SOL programs easier to write and more readable, a MACRO feature allows the 
definition and use of text abbreviations within a SOL pro ram. A single descriptive macro 
call can replace many lines of SOL code. For example, OL has a pre-defined ?INCLUDE 
macro that allows entire text files to be included verbatim as part of a SOL program. 

SOL's conventional features are combined with its unique features to solve design 
problems. 

details can be found in N 2 - f  SA echnical Memorandum 100565 (ref. 6). 

TRADITIONAL LANGUAGE FEATURES: 

I output Declaration Control I Calculation I 
ariable Declaration IConditional DU I OODS IAsslanment IPrint 

hubroutine Declaration IIF/THEN/ELSE iMath Expressions i I 
Iterative UU loops I 
Subroutine Call 

UNIQUE LANGUAGE FEATURES: 



SOL Capabilities Used to Solve 
a Design Problem 

~ 

ANALYSIS: 

Math Models 
0 Subroutines 8 Code Logic 
0 MACRO Abbreviations 
0 FORTRAN Blocks 

OPTIMIZATION: 

0 Concise, Symbolic OPTIMIZE 

0 ADS Optimization Software 
description 

Usin SOL as a tool for en ineering design involves writing a sequence of SOL 
statement that apply numeri i  7 optimization methods to a design problem. The process of 
solving a problem using SOL is shown in the figure below. A program composed of SOL 
statements is passed as input to the SOL compiler. Within the SOL program, the design 
can be modeled mathematically or with subroutines and other code. In addition, existing 
FORTRAN routines can be used via the FORTRAN block feature, and SOL's macro 
abbreviation feature can be used. SOL's OPTIMIZE statement describes the optimization 
problem, incorporating the methods of numerical optimization implemented in the ADS 
optimization routine. (ref. 4). 

The SOL compiler translates the SOL program into an equivalent FORTRAN program 
and does error-checking. The compiler offers approximately ninety different error 
messages, and c,an produce listings, a.variab!e cross-reference,.and an optimization 
summary which lists the ObJWbV8, desgn variables, and constratnts. However, SOL does 
not provide error-checking features for FORTRAN BLOCK code fragments; SOL'S 
error-checking is limited to SOL statements on1 . 
problem. This resulknt FORYRAN program includes subroutine calls to the ADS software 
and other detailed code. 

The FORTRAN rogram roduced by the 8 OL compiler executes to solve the design 

SOL COMPILER 

ERROR-CHECKING: - 90 Error Messages 

Variable Cross Reference 
Optimization Summary 

LISTINGS: 

Calls to ADS 
0 Detailed Code I 
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Math and SOL Description of 
Two-Bar Truss 

SOL'S description of an optimization problem parallels the, mathematjcal description of 
the problem as illustrated in the figure below which shows a minimum-weight, symmetric 
two-bar truss problem. 

The mathematical description appears on the left of the figure. The truss weight is the 
objective function to be minimized as stated under the heading, "minimize." The design 
variables and constraint relations appear under the heading, 'subject to." The tube 
diameter (d) and truss height (h) are design variables, with compressive stress and Euler 
buckling constraints to insure that the truss neither yields nor buckles. A mathematical 
model of the truss is given under the heading, "where," which includes the additional 
variables for truss length (L), half-span (B), tube wall thickness (t), load (P), compressive 
strength of material (amax), modulus (E), and material density (p). The mathematical 
model defines the objective and constraint relations as functions of the design variables. 

represented by a single variable (weight). Design variables and constraint function 
relations appear between the words USE and END USE. The lower and upper bounds on 
the design variables appear in brackets following the word, IN. In- addition, the optim.ization 
software requires design variable initial values, which are given with each design variable 
after the "=" symbol. Compressive stress and Euler buckling constraints follow the design 
variables. 

Finall e uations modeling the truss ap ear between the words END USE and END 

constraint, acts identically to the constraint relation in the mathematical description. 

The SOL description on the right parallels the mathematics. The objective function is 

O P T I M I ~ I .  % ote that the single SOL varia 1 le (buckle), representing the Euler buckling 

Jblathemat ical Descri pt i ~ t l  

Minimize: weight(d, h) 

Subject to: 
1 ~ d s 3  
1 0 s  hs30  

astress (d,h) c omax 
ostress (d,h) -8 (d,h) < 0 

Where: 
weight(d,H) = 2pdtL 
ostress (d,h) = (PL)/(nthd) 
ae (d,h) = n2 E(& + t2)/(8L2) 

OL DescriDtion 

OPTIMIZE weight 

d - 1  IN [1,3] 
h = 15 IN [ I O ,  301 

stress .It. MaxStress 
buckle .It.O 

END USE 

weight = 2*rho* i*d*t*L 
stress = (P*L)/&*t*h*d) 
Euler =(pi**2*E*(d**2+t**2))/(8*L**2) 
buckle = stress - Euler 

END OPTIMIZE 
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SOL Error-Checking Example 

A SOL program is assed as input to the SOL compiler which translates the SOL code 

variety of errors. The figure below illustrates the error-checking capability of the compiler. 
An intentionally erroneous SOL program for the two-bar truss problem appears on the 

left of the figure. The program has been annotated with line numbers to aid the discussion. 
The inset box on the right lists the actual error messages given by the SOL compiler on 
receipt of this program. The first error occurs on line 11 where the word IN has been 
misspelled; the compiler can usually correct the spelling of reserved words when the word 
is misspelled by a single character. The next error is optimization specific, warning that the 
constraint variable stated on line 14 has not been assigned a value. The error message 
leads to the discovery that a typographical error on line 20 is the true culprit. Finally, an 
error appears for line 17 because the variable for material density, rho, was not initialized. 
Either of the last two errors would have caused incorrect optimization results if left 

undetected. The last two errors are difficult to detect manually; a laborious examination of 
the optimization results could reveal that the results were incorrect, but would not provide 
the cause for the poor results. 

correctness of problem formulation nor infer one's intentions. However the example here, 
although not exhaustive, illustrates the general sorts of errors detected by the compiler. 

into an equivalent FOR ? RAN code, and provides the key feature of error checking for a 

It is important to note that the compiler is not clairvoyant; it cannot check the 

- Erroneous Program Error Messages 

1 : PROGRAM TwoBar 1 1  : d=l INN[1 ,3]  
2 : t = 0 . 1  ***ERROR '" MISSPELLED "IN" CORRECTED 
3 : P  =3300 
4 : B = 3 0  
5 E = 30000000 
6 : pi = 3.141592554 17 weight = rho'2'pi'd+t'L 
7 : MaxStress = 10000 ***ERROR "UNINITIALIZED IDENTIFIER 
8 :  
9 : OPTIMIZE weight 
10 :USE 
11 : 

13 : stress .It. MaxStress 
14 : buckle .It. 0 
15 :ENDUSE 

17 : weight = rho*2* i*d*t*L 
18 : stress = (P*L)/&i*t*h*d) 
19 : E-stress = ((pi0*2)*E*(d**2+t**2))/(8*L**2) 
20 : buck1 = stress - E-stress 
21 : END OPTIMIZE 
22 : END TwoBar 

14 . buckle .It. 0 
***ERROR "OPTIMIZATION VARIABLE HAS NOT BEEN SET 

- 

16 : L = SQRT(B**2 + h**2) 
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Scram jet En g i ne Coo I i ng Jacket A pp I i cat ion 

The design of scramjet en ine cooling jackets, in which numerical optimization is used 

A scramjet engine resides on the lower surface of a hypersonic vehicle, as in the 
as a design tool, illustrates SOT'S use for an engineering application. 

schematic below. A conceptual , two dimensional engine cross-section appears in the 
middle of the figure, showin the ramp and cowl rtions of the engine. The heating of the 

required to maintain a survivable temperature. Only the ramp and cowl portions of the 
engine are considered here, althou h other parts of th.e engine also require active coolin . 
metallic, surface heat exchangers (cooling jackets) attached directly to the engine primary 
structure. 

minimize the required coolant flow rate for specified heating rates. The design must also 
satisfy requirements such as material limits on cooling jacket temperature, fatigue life and 
stress. 

The cooling jacket design problem was recast in the form of an optimization problem 
and implemented in SOL using SOL'S OPTIMIZE statement. Existing FORTRAN routines 
were incorporated for the analysis of a single coolin jacket panel via SOL'S FORTRAN 

calculations. 

engine surfaces wetted by t a e airstream is so ex r reme that an active cooling system is 

A promising active cooling system P or this application is a system of hydrogen-fuel-coole 8 , 

focuses on a channel-fin design. The cp esign goal is to design cooling jackets which 
Both channel-fin and pin-fin coolin jackets were studied, but the example in this paper 

block feature. Other SOL features were used to con ? rol the analysis and perform ancillary 

Application Implemented with SOL 

0 Optimization problem posed in SOL. 

0 

SOL features used to control analysis routines. 

Single panel analysis with existing FORTRAN codes. i 



Cooling Jacket Design Problem 

The figure below illustrates the scramjet engine coolin jacket design problem in some 
detail. As seen in the top half of the figure, a coolant flows 9 hrough cooling jacket panels to 
remove the incident heat flux (q). Only two panels of equal dimensions are shown in the 
figure, although many panels of varying sizes can be used. For more details of panel 
confi urations see reference 7. 

?he lower half of the figure illustrates the geometry of a channel-fin cooling jacket. 
As seen on the left-hand side, a channel-fin geometry can be completely described by the 
channel width (s , the channel height (h), the channel wall thickness (w), and the outer wall 

jacket, illustrating the coolant flow through the jacket channels. 
When the desi n is recast in the form of an o timization problem, several desi n 

describe the cooling jacket geometry. 

thickness (t). 2 he right-hand side of the figure shows a top view of a channel-fin cooling 

variables describe t R e coolant flow conditions an 8 the remainder of the design varia Yb les 

Coolant Flow: 

Channel Fin Jacket Geometry: 

I Heat Flux (9) 

W 

Coolant Flow 

I Cross-section Top View 
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SOL's Use for Cooling Jacket Optimization 

SOL's use in the cooling jacket optimizaJion is shown in the schematic below. SOL 
code describes the optimization problem as in the left-hand part of the figure. The objective 
function to be minimized is the coolant mass flow rate. Weight is a more common objective 
function. But in this application minimizing the coolant mass flow rate can decrease the 
coolant needed, effectively reducing the total vehicle weight. The design variables consist 
of variables describing the coolant mass flow rate, the coolant inlet pressure, and several 
variables to describe cooling jacket geometry. 

In addition, constraints on the coolant and jacket conditions are required. As stated 
earlier, existing FORTRAN routines calculate the constraint function relations. The 
constraint routines are called from the SOL program by subroutine calls. Design variable 
values are passed as parameters to the constraint routines, which return constraint function 
values, also via parameter- assin . 

The SOL program for tt!e coofng jacket application is passed as input to the SOL 
compiler, which produces an equivalent FORTRAN program as output. The compiler also 
performs program analysis and error-checking on the SOL code. 

The out ut FORTRAN code contains calls to the ADS optimization software which 

The output code also contains detailed code such as variable declarations and so forth. 
The FORTRAN code output by the SOL compiler is com iled and linked usin the 

jacket optimization. 

provide's S 8 L's optimization capability, as well as calls to the constraint modeling routines. 

FORTRAN compiler and linker. The resulting executable co J e is run to perform t t e cooling 

FORTRAN CODE 
CALLS TO ADS 
DETAILED CODE 

CALLS TO CONSTRAINT 
MODELS 

-_-------- - - -  
-SOL CODE 

COOLANT MASS FLOW RATE 

DES I G N VARIABLES; 
JACKET GEOMETRY 

COOLANT MASS FLOW RATE 
COOLANT INLET PRESSURE 

FORTRAN 
CONSTRA INTS; ERROR CHECKING COMPILE and 

PROGRAM ANALYSIS LINK JACKET TEMPERATURE 
COOLANT MACH NUMBER 

COOLANT PRESSURE DROP 
JACKET STRESSES I JACKET FATIGUE LIFE - --------------- 

' FORTRAN BLOCK 
CONSTRAINT MODELS 



Cooling Jacket Optimization Description in SOL: 
An Overview 

The figure below gives the SOL program for the cooling 'acket optimization problem in 
outline form with all reserved words shown in boldface type. t h e  program begins with the 
word PROGRAM followed by the name of the program. Before the optimization problem 
description begins, variables and subroutines are declared, and macro definitions appear. 
In the figure, the actual code has been replaced with comments, marked by exclamation 
point symbols, to simplify the discussion. Subsequent figures will discuss each of the 
comment sections in turn. 

The o timitation problem description is initiated by the word OPTIMIZE and 
terminate by the words END OPTIMIZE. A single variable iven after the word 
OPTIMIZE states the objective function. Next, design variab e, constraint relation and 
optimization software option declarations appear between the words USE and END USE 
In the figure below, the 
code for the cooling 
OPTIMIZE, as indicated 

The main body of the 
name of the program. In SOL, subroutines follow the end of the main program body. In 
the cooling jacket application, SOL'S ?INCLUDE macro is used to include the contents of 
the file "cooljacket.sub," which contains the subroutines for cooling jacket analysis. 

B 8 
have been replaced with comments. The SOL 

between the words END USE and END 

terminates with the word, END, followed by the 
comment in the figure. 

PROGRAM Cool-Jacket 
! Variable and Subroutine Declarations 
! Macro Definitions 

OPT I M I  ZE tot a l s a n e  1-f low rat e 
USE 

! Design Variable Declarations 
! Constraint Function Relation Declarations 
! Optimization Software Options 

! Cooling Jacket Analysis 
END USE 

END OPTIMIZE 

END Cool-Jacket 

?INCLUDE Cool-Jacket.sub 
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Objective and Design Variable Description in SOL 

The figure below details the SOL code for the design variable declaration section of 
the coolin 'acket optimization as outlined previously. The ob'ective function to be 
minimize? (he coolant mass flow rate, follows the word OPThIZE and is represented 
by a single variable, "totalganel-flowrate." 

Design variable declarations follow the word USE. For this application, six design 
variables are used. Two variables, "panel flowrate" and "inlet ressure," describe 
coolant conditions. Also, four design variales are needed to 8 escribe the geometry of 
each cooling jacket panel. The design variables for a single panel are shown in the 
figure: each of the panel geometry variables are suffixed with the panel name, 

anel-1 .I1 If a second panel were also considered, four additional design variables for 

unique names, these variables could have the suffix I'ganel-2." This naming convention 
provides a consistent way to handle multiple-panel optimizations. 

The lower and upper bounds on the design variables appear to the right of each 
design variable enclosed by brackets; the actual numbers are unimprtant for, this 
discussion. In addition, initial values for design variables required y the optimization 
software appear with each design variable following the equals symbol. 

t ? e second panel's geometry would be required. Since design variables must have 

OPTIMIZE totalganel - flowrate 
USE 

panel-flowrate - 3.0 IN [1.000, 4.0001 
inletgressure = 1000.0 IN [lOOO., 1500.1 
aspect-ratio-panel-1 = 0.5641 IN [0.400, 0.8001 
spacing-panel-1 - - 0.02 IN [0.020, 0.0251 
outer-wall-panel-1 = 0.016 IN [0.010, 0.0181 
channel-wall-panel 1 = 0.09 IN 10.060, 0.1201 
! * * *  Constraint Rzlation Declarations ***  
! * * *  Optimization Software Options * * *  
! ***  Cooling Jacket Analysis * * *  

- 

END USE 

END OPTIMIZE 



Constraint Function Relation Descriptions in SOL 

The fi ure below details the SOL code for the constraint function relation declaration 
section of w e cooling jacket optimization as outlined previously. 

Six constraints are used for a single cooling jacket panel optimization. A single 
constraint on coolant pressure drop is represented by the variable, "pressure-drop." In 
SOL, the relation "less than I' is re resented by .It. and the relation "treater than" is 

additional constraints are required for each panel, representing cooling jacket low cycle 
fati ue life, coolant Mach number at the panel exit, cooling jacket tem erature, and cooling 

suffixed with the panel name. In the figure, the name "_panel-1" is used as a suffix. 

represented by .gt. In this case, t R e "pressure-drop" must be less t an 100 psi. Five 

jac!et stresses. ASwith the design variables, the cooling jacket pane P constraints are 

OPTIMIZE tot a l g a n e  1-f 1 owrat e 
USE 

! *** Design Variable Declarations *** 
fatigue-lifeganel-1 . gt . 600 
gas-mach-outganel 1 . It. max coolant-mach 
outer-tempganel-1- . It. 200TT 
wall-stressganel-1 . It. 1 
web stresssanel-1 .It. 1 
! *T* Optimization Software Options * * *  
! * * *  Cooling Jacket Analysis * * *  

pres su r e-drop .It. 100 

END USE 

END OPTIMIZE 
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Optimizer Option Description in SOL 

The fi ure below details the S,OL code for the o timization software o tion declaration 
section of be  cooling jacket optimization as outline B previously. The AD sp optimization 
software used by SOL offers a variety of optimization algorithms and access to numerous 
internal parameters such as convergence criteria or maximum number of iterations. The 
software option declaration section provides access bo these parameters from a SOL 
program. 

The software option declaration section appears after the desi n variable and 
constraint function relation declarations. The software o tions sect 9 on begins with the word 
OPTIONS and ends with the words END USE. In the B gure below, a sequential quadratic 

search. The modified method of feasible direct B ons for constrained minimization Is used as 

optlmlzat Y on problem, the objective: design variables: and constraints, from the details of the 

programming strategy is selected along with a olden section method of one-dimensional 

the o tlmizer. SOL automatically supplies default option values for the new user, but the 
OPThNS section ermlts a knowledgeable user to take full advanta e of the options 
offered b the ADZsoftware. Also, the OPTIONS section separateske description of the 

particular optimization software used to solve the problem. 
The word normalize indicates that desi n variables are to be normalized between the 

values 0 and 1 .O. Scaling variables often m s e an optimization problem better conditioned 
and hence easier to solve. 

I OPTIMIZE t o t a l  - panel-f lowrate 
USE 

! * * *  Design Variable Declarations *** 
! * * *  Constraint  funct ion r e l a t i o n  Declarat ions * * +  
strategy = sequential quadratic 

optimizer = modified feasible  direct ions 
search = golden sect ion 
normalize 

! * * *  Cooling Jacket Analysis * * *  

OPTIONS 

END USE 

END OPTIMIZE 



Cooling Jacket Analysis in SOL 

The figure below details the SOL code for the cooling jacket analysis, as outlined 
previously. The analysis computes the values of the objective and constraints as functions 
of the design variables. 

The analysis code appears between the words END USE and the words END 
OPTIMIZE. In the figure, the first two assi nment statements define variables for the initial 
coolant pressure and coolant temperature. ?he next statement gives the location of the first 
cooling jacket panel. 

the figure. The macro abbreviation hides the details of the anal sis. The macro itself is 
shown in boldfaced type, whereas the macro parameters suppIed by the user are shown in 
plain type. The first parameter, "panel-1" is the name of the panel being analyzed. The 
two parameters that follow "x=" define the length of the panel, and the two parameters for 
"q=" define the heat flux incident at the start of the panel and at the panel exit. The user 
simply calls the ?Channel-Panel macro with the desired parameters to analyze a single 
cooling jacket panel. The macro defines the necessary variables and calls the external 
FORTRAN routines to perform the analysis.The user can conduct multiple panel analysis 
by calling the macro once for each panel analyzed. Although the actual code for the 
analysis is quite complex, the macro simplifies the complexity into a macro call with five 
parameters. This discussion focuses on the use of the ?Channel-Panel macro, some 
details of how the macro was defined are presented subsequently. 

Two assignment statements follow the macro call. The first assigns the objective 
function a value; the variable "panel-flowrate" is a design variable. The second 
assignment gives a value to the pressure drop constraint. Other constraint variables are 
defined b the macro call. The analysis and optimization ends with the words END 

A SOL macro, ?Channel-Panel, analyzes a single cooling jacket panel as shown in 

o P TI M IJE. 

OPTIMIZE total - panel-flowrate I USE 
I I EN'b USE 

I * * *  Design Variables, Constraints and Options 

I gas-p-in = inlet-pressure ! a design variable  
gas-t-in = 1000 I Panelstart = 0 
?Channel - Panel panel-1 begin x= 0 q= heatrate 

total-panel-flowrate = panel - flowrate 
pressure-drop = inletpressure - gas-p-out 

end IC= 75 q= heatrate 

END OPTIMIZE 
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Coo I i ng J ac ke t Anal y s i s : 
?Channel - Panel Macro Use 

The figure below shows the creation of the ?Channel-Panel macro used to conduct 
coolin jacket analysis. 

T Ie  box in the upper part of the figure shows how the Channel-Panel macro is 
defined. The definition begins with the word, ?DEF, followed by the name of the macro. 
The numbered items in plain text (#1, #2, ..., #5) are parameters to the macro. Also, SOL 
allows text boldface in the figure) to be used to separate the macro parameters. Often the 

example the text, begin, was chosen to indicate that the second and third parameters are 
the location (x=) and heat flux (q=) at the panel START, whereas "end" is used to indicate 
that the fourth and fifth arameters are for the panel EXIT. 

Macros are text abpreviations; the text that the macro abbreviates appears between 
the open and close curly braces in the definition. The ?Channel-Panel text initializes all 
the variables associated with a cooling jacket panel analysis. Only one initialization is 
shown in the fi ure with the remainder represented with ellipses. The text also calls an 

figure. 
When the macro is called, the macro's text is executed with the user supplied 

parameters inserted. For example, the lower part of the figure shows a call to 
?Channel-Panel. The effect is exactly as if the ve bottom text box were typed instead of 

inserted in the macro text in the place of "#1" when the macro is called. 

FORTRAN routine, which has 23 parameters, must be repeated for every anel analyzed; 
tedious typing if multiple panels are analyzed. The macro hides this comp()exity, replacing 
the tedious typing with one simple macro call per panel. 

macro crea I or will use this delimiting text as a reminder for the parameters' use. For 

external FOR ;k AN routine which analyzes a panel, also only shown as a comment in the 

the call; the macro merely abbreviates text. Notice 7 hat the parameter, "panel-1 ,I1 is 

A macro was used because the variable initializations and call to the external 

! C a l l  e x t e r n a l  s u b r o u t i n e  wi th  FORTRAN b lock  
1 

1' 

Ill begin x= #2 q= # 3  
end x= X4 q= X5 

webhelght = aspec t - r a t lo -# l  * spaclng-#l  

Code SUBSTITUTED for Macro Call: 

webhe i g h t  = aspec t - r a t  i o g a n e  1-1 * spacing-panel-1 

! C a l l  e x t e r n a l  s u b r o u t i n e  with FORTRAN b lock  
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Some Results from Cooling Jacket Study: 
Channel Fin Versus Pin-fin Comparison 

The cooling jacket study produced many results, some of which are illustrated in the 
figure below. The gra h charts optimum coolant flow for channel-fin and pin-fin jackets as a 
function of heat flux. {esults for a Nickel cooling jacket panel, 36 inches wide and 24 
inches long with an inlet pressure limit of 3000 psi., are shown in the figure. The graph 
shows several significant results. 

First, a simple energ -balance for determining coolant re uirements predicts a linear 

the figure. 
Second, at the lower heat-flux levels, there is little difference in the value of the 

o timum coolant flow rate for channel-fins and pin fins. But at high heat fluxes, the 

Finally, each point on the graph for channel-fins or pin-fins represents an optimum 
coolant flow rate. In this way, the graph can be interpreted as illustrating the optimum 
sensitivity of the coolant flow requirements to heat-flux for the given cooling jacket design. 
Note that smooth curves are faired through the calculated points of this fi ure, but the 
actual curves undoubtedly contain slope discontinuities whenever the se P of active design 
constraints changes. 

relationship between coo Y ant flow rate and heat flux. The resu 7 ts are clearly non-linear in 

c R annel-fins have lower coolant flow requirements than the pin fins. 

5 -  

4 -  Nickel cooling jacket 
24" x 36" panel 
3000 psi inlet pressure limit 

Optimum 3 - 
coolant 

flow rate, 
Ibm/sec 2 - 

1 -  

0 400 800 1200 1600 2000 
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SUMMARY 

A special-pur ose programmin langua e, SOL, has been developed to expedite 
implementation o P optimization prob 7 8  ems an to make the process less error-prone. A more 
detailed discussion of SOL can be found in reference 6. Currently SOL is only available for 
DEC VAXNMS systems. 

As a language, SOL provides a high-level interface to the ADS o timization software. 
SOL integrates optimization and analysis within a single OPTIMIZE C P  escription, which 
parallels the mathematical description of an optimization problem. In terms of analysis, 
SOL provides language statements which can be used to model a design mathematically, 
with subroutines and other code, or to model a design with existing FORTRAN routines and 
parameter-passing. SOL also provides error checking geared to optimization problems to 
make problem implementation less error-prone. Because optimization is a built-in language 
statement, the Ian uage is the interface. 

example, the cooling jacket optimization problem was posed in SOL. Existing FORTRAN 
routines for panel analysis were incorporated into the SOL program using SOCs 
FORTRAN block feature. Other SOL features were used to control the analysis routines, 
and provide a simple method of conducting multiple panel analysis. Reference 7 provides 
details of the scramjet engine cooling jacket application. 

SOCs use is i il ustrated in the design of scramjet engine cooling jackets. In this 

SOL, a computer language for optimization, developed. 

0 NASA TM 100565 details SOL 

Available for DEC VAXNMS Systems 

High-level Interface to Optimizer Software 

0 Simplifies Optimization Software use 

Reduces Errors with Error-Checking 

Language Integrates optimization and Analysis 

Cooling Jacket application illustrates SOL'S use. 

Existing FORTRAN codes used for analysis 

NASA TM 100581 details Cooling Jacket appllcatlon 

61 8 



References 

Schmit, L.A.: Structural S nthesis -- Its Genesis and Development. AiAA J., vol. 19, 
no. 10, Oct. 1981, pp. 1249 - 12 i 3. 

2Ashley, H.: On Making Things Best -- Aeronautical Uses of Optimization. J. Aircr,, vol. 

3Vanderplaats, G.N.: CONMlN -- A FORTRAN Program for Constralned Function 

19, no. 1, Jan. 1982d, pp. 5 - 28. 

Minimlzatlon -- User's Manual, NASA TM X-62282,1973, 

4Vanderplaats, G.N.: ADS -- A FORTRAN Program for Automated Deslgn Synthesis -- 

5Gi11, P.E.; Murra W.; Saunders, M: and WrI ht, M.: User's Guide for NPSOL 

Laboratory, Stanford University. January 1986. Available form the Stanford Office of 
Technology Licensing, 350 Cambridge Avenue, Suite 250, Palo Alto, California 94306, 
USA. 

6Lucas, S.H. and Scotti, S.J.: The Sizing and Optimization Language, SOL, -- A 
Computer Language for Design Problems. NASA TM 100565,1988. 

-/Scotti, S.J.; Martin, C.J.; and Lucas, S.H.: Active Cooling Design for Scramjet Engines 
Using Optimization Methods. NASA TM 100581 , 1988. 

Version I. IO. NASA Contractor Report 177985, Grant NAG1 -567,1985. 

(Version 4.0): a F O R ~ I A N  Package for donlinear b rogramming. Systems Opttmization 

61 9 


